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J. Phys. A: Math. Gen. 19 (1986) 453-475. Printed in Great Britain 

Asymptotic behaviour of the perturbation expansion in n = 0 
field theories 

A J McKane 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK 

Received 7 May 1985 

Abstract. We develop a method for studying the high-order behaviour of the perturbation 
expansion in theories in which the number of field components, n, is taken to zero. This 
procedure is illustrated on the field theory formulation of the percolation problem, which 
can be considered as the n = O  limit of the (n+ 1)-state Potts model. The saddle points 
controlling the asymptotic behaviour are labelled by an integer r = 1 , 2 , .  . . , n for positive 
integer n, but after continuation to n = 0 the dominant contribution effectively comes from 
the saddle point with r = CO. The perturbation expansion is found to be oscillatory at large 
orders and its behaviour is calculated. 

1. Introduction 

In the field theoretic study of critical phenomena the Hamiltonian is constructed by 
adding together all interaction terms allowed by the symmetry of the system. This 
Landau-Ginzburg- Wilson Hamiltonian will therefore have interactions cubic in the 
fields (the term cubic as used here means the product of three fields) unless this is 
forbidden by the symmetry. If cubic interactions are present then quartic and other 
higher-order terms are naively irrelevant as far as critical behaviour is concerned and 
are in the first instance ignored. In the renormalisation group (RG) approach (Amit 
1978) one now (a) looks for fixed points of the theory with only cubic interactions 
present and then (b) checks that the omission of the quartic and higher-order terms 
was justified by calculation of their anomalous dimension near the fixed point(s) 
obtained in (a). 

However, this approach is clearly not valid for models with conventional cubic 
interactions, since such field theories have Hamiltonians which are not bounded below 
and higher-order terms have to be added to the Hamiltonian simply to make the theory 
exist. Exceptions to this may occur when unphysical limits are taken, such as when 
the number of field components, n, is taken to be zero or negative (which will be the 
case of interest to us here) or when no such limit is taken but the coupling is pure 
imaginary. This distinction between conventional cubic theories which do not exist 
and those which do is not obvious from low-order perturbation theory, but if one just 
goes ahead and applies the RG procedure outlined above, the difference does seem to 
show up. Firstly the structure of the fixed point equation to lowest order in the E 

expansion is such that fixed points are more likely for unphysical values of n or 
physical values of n but with an imaginary coupling constant, indicating that these 
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theories are more likely to have continuous phase transitions. Secondly, even if a fixed 
point exists to lowest order for conventional theories (for example, the three-state 
Potts model), it is found that quartic interactions tend to become relevant as E increases 
(Amit et al 1977). This points towards the necessity of including quartic interactions 
to stabilise the theory. On the other hand the theories with unphysical n or imaginary 
coupling constant, for which the relevance of quartic interactions has been investigated, 
do not seem to have this tendency (Amit et al 1977, Elderfield and McKane 1978, 
Kirkham and Wallace 1979). 

The methods developed by Lipatov (1977a, b) and BrCzin et al (1977) are clearly 
suited to the study of whether or not a particular cubic theory exists in its own right 
without the need for stabilising terms. The application of these methods is straightfor- 
ward in the case of conventional theories where n is a positive integer (McKane 1979). 
It is found, as expected, that the theory is unstable when the coupling constant is real. 
This leads to a perturbation expansion which is divergent and non-oscillatory at large 
order. If the coupling constant is pure imaginary, however, there is no instability and 
the perturbation expansion is Bore1 summable. This is the situation in the problem of 
Yang-Lee edge singularities (Fisher 1978, Kirkham and Wallace 1979) and the informa- 
tion obtained from the asymptotic behaviour of the perturbation expansion has led to 
improved estimates for universal quantities (de Alcantara Bonfim et al 1980, 1981). 

But it is precisely the set of theories that are of the most physical interest-those 
with n not an integer, which have some chance of being stable-that have not yet 
yielded to analysis?. It is the purpose of this paper to set out a method for determining 
the asymptotic behaviour of the perturbation expansion for these theories, and in 
particular theories with n = O .  We restrict ourselves to the study of the percolation 
problem, which is the n = 0 limit of the ( n  + 1)-state Potts model, for three reasons. 
Firstly, it is a comparatively simple n = 0 theory and is therefore useful for developing 
techniques which can then be applied to more complicated systems, such as spin 
glasses. Secondly, it is of considerable interest in its own right and knowledge of the 
asymptotic behaviour should lead to improved estimates for critical exponents. Thirdly, 
the only attempt so far to understand the asymptotic behaviour of n = 0 theories with 
cubic interactions was made on this problem by Houghton et a1 (1978), to be referred 
to as HRW. They attempted to circumvent difficulties associated with the n = O  limit 
by reformulating the theory so as to avoid this limit. This reformulation is special to 
the percolation problem and cannot be applied to other types of interaction. Originally 
our intention was to check our method, in which the limit n+O is taken explicitly, 
with the result of HRW for the percolation problem. Having checked our method we 
could then go on to apply it to other situations with confidence. However, as explained 
below and in more detail in § 2, we do not agree with HRW and have enough confidence 
in our method to question their result. 

The determination of the asymptotic behaviour of the perturbation expansion in 
field theory begins with the observation that the imaginary part of the Green functions, 
generated for values of the coupling constant for which the theory is unstable, can be 
calculated by studying the classical solutions of the field equations (the instantons) of 
the theory (Itzykson and Zuber 1980). Having obtained the imaginary part of the 
Green function for a value of the coupling constant for which the theory is unstable, 
the asymptotic behaviour of the perturbation expansion for a value of the coupling 

t With the exception of the work of Houghton er al on the percolation problem which is discussed further 
below. 
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constant for which the theory is stable is obtained by a dispersion relation. If one 
applies these ideas to a wide class of n + 0 theories then one finds that the instanton 
solution of least action, which should give the dominant contribution to the asymptotic 
behaviour, has an action proportional to n. This means that the Kth-order term in 
the perturbation expansion for large K, behaves like n-K as n+0.  This is clearly 
nonsense and yet the solution with least action certainly gives this result. As we have 
mentioned already, the only progress made on this point so far has been by HRW, 
who did not try to understand this difficulty further but instead tried to reformulate 
the percolation problem to avoid the difficulty and in this way found a well defined 
expression for the Kth order of the perturbation expansion for large K. Moreover 
they found a series which was oscillatory for large K ,  implying that the theory is stable 
as n + 0. Here we will show how one can recover the results of HRW for the percolation 
problem without the reformulation and by instead explicitly taking the limit n + 0. We 
will then go on to argue that this is not a correct way of handling the limit; a more 
careful treatment gives a different form for the asymptotic behaviour, although the 
series is still found to be oscillatory. Furthermore, this treatment should be applicable 
to other n = 0 theories. 

The layout of the paper is as follows. In § 2 we introduce the (n + 1)-state Potts 
model as a field theory and calculate the asymptotic behaviour of the perturbation 
expansion for the zero-dimensional (d  = 0) version. This has all the structure needed 
to illustrate the problems associated with the n = 0 limit. We obtain the d = 0 version 
of the result of HRW and comment on the validity of this approach. In § 3 we reconsider 
the asymptotics of the zero-dimensional percolation field theory but with a more careful 
consideration of the n = 0 limit and in 8 4 we extend this approach to the field theory 
in 6 - E dimensions. Various observations and general comments are made in P 5 .  An 
appendix contains some added technical details relevant to the discussion in 0 0  2 and 3. 

2. Illustration of the problem 

In this section we will obtain the asymptotic behaviour of the perturbation expansion 
for the partition function of the d = 0 field theory with the symmetry of the (n + 1)-state 
Potts model. This will enable us to go on to illustrate the problems which occur when 
one tries to perform such analyses with n = O .  

The ( n  + 1)-state Potts model in d dimensions can be written as a field theory with 
a Hamiltonian of the form (Zia and Wallace 1975) 

x(4i)= d d X [ S ( V 4 i ) ( V 4 i ) + f r 0 4 i 4 i + ( g / 3 ) P U k ~ i 4 j 4 k + 0 ( 4 4 ) 1  (2.1) I 
where the summation convention is assumed, i = 1,2, .  . , , n and where 

Here {e:, ef, . . . , e;+'}  is a set of ( n  + 1) n-component vectors specifying the vertices 
of a hypertetrahedron in (n + 1) dimensions. They satisfy 

n + l  1 epe;=(n+1)aij, 
a=1 

n + l  
C ep=O. 

a-I  
(2.3) 
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The quartic and higher-power terms will be omitted from (2.1) from now on for the 
reasons discussed in § 1. In this paper we will be particularly interested in the cases 
d = 0 (for illustrative purposes) and d = 6 - E (this is analytically tractable and has 
applications to, the E expansion) but the methods developed hold for any d < 6 ,  in 
particular d +3. In the rest of this section and the whole of § 3 we will be exclusively 
concerned with the d = O  theory. 

In zero dimensions there are no spatial variables for the fields to depend upon and 
thus 

x ( $ t ) l d  =O = tdidi + (g/3)Pijk$i$jdk* (2.4) 

For simplicity, we have chosen the normalisation so that the coefficient of $& is 1. 
The partition function is then an n-fold integral: 

where = (&, $2, . . . , d,,). Expanding in g we see that the series takes the form 

Our aim in this section is to find the form of Z K ( n )  for K large, initially with n a 
positive integer but subsequently with n + 0. 

Clearly the integral in (2.5) diverges at large di for real g. This is reflected in the 
fact that Z,,(g) develops an imaginary part for real g. To calculate it, let = -(l /g)ui,  
then 

Zn(g)=g-"  { du e x p ( l / g 2 ) ( - ? r u i u i + ) P j j k u , U , U k ) .  (2.7) 

For small g we may evaluate this integral by the method of steepest descent. Saddle 
points are found by solving 

ui = pijkujuk, i = 1 , 2  , . . . ,  n. 

The general solution to (2.8) may be written as 

where r = 0, 1 ,2 , .  . . , n + 1 is an index classifying the solutions in the sense that a:', is 
an ( n  + 1)-component vector with r entries equal to unity and ( n  + 1 - r )  equal to zero. 
Actually because of the last relation in (2.3) it is easy to see that the solutions 
characterised by r' = ( n  + 1 - r )  are not distinct from those characterised by r. Also for 
odd values of n the solutions with r = $( n + 1) do not exist since the normalisation 
factor in (2.9) diverges. In summary then, r =0,1 ,2 , .  . . , i n  for n even and r = 
0,1,2, .  . . , +( n - 1) for n odd gives us all the solutions. For each r there are n+lCr 
solutions but they all give the same value for the exponent in (2.7), that is, the 'action' 
only depends on r :  
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r=O, 1 ,2 , .  . . , [n/2] (2.10) 

where the notation [n/2]  means the largest integer less than or equal to n/2. To find 
the factor multiplying the exponent one needs to find the eigenvalues of 

a' 
(-+iu,u, + f P k l m U k U l U m ) u = u " )  

M;)  E - 
au, auJ 

= +2PtJkuv') 

(2.11) 

If r = 0, M'," = -a,, and  so all the eigenvalues are equal to -1. If r = 1, with aTr, = a a l ,  
say, then the eigenvectors are et and {et + . . . + e: + ( n  + 1 - s)eS+': s = 1, . . . , n - 1) 
with eigenvalues 1 and  - ( n + l ) / ( n - 1 )  respectively. Thus for r =  1 there is one 
eigenvalue equal to 1 and  (n - 1) equal to -(n + l ) / ( n  - 1). The case of general r is 
given below. 

Suppose a?,, = a a l  + Sa'+. . . + 6":  

eigenvector e :  + . . . + e: has eigenvalue 1; 

eigenvectors et +.  . . + ef - se:+' (s  = 1,2,  . . . , r - 1) have 

eigenvalue (n + 1)/(  n + 1 - 2r); (2.12) 

eigenvectors ef  + . . . + e:+'-' + ( n  - r - s + 2)e:+s (s = 1,2,  . . . , n - r )  have 

eigenvalue -( n + 1)/(  n + 1 - 2r). 

Thus there is one eigenvalue 1, ( n  - r )  eigenvalues -(n + 1)/(  n + 1 -2r)  and ( r  - 1) 
eigenvalues (n + 1)/(  n + 1 - 2r). Clearly while the eigenvectors depend on the choice 
of aTrj the eigenvalues d o  not. 

Using the above information we may write down an  expression for Z,,(g) when g 
is small: 

(2.13) 

The first term on the RHS of (2.13) is the r = 0 contribution. It gives the usual 
perturbation expansion about 4, = 0. The contributions from the non-trivial saddle 
points admit the possibility of imaginary parts being generated. In our case there are 
1 + ( r  - 1) = r positive eigenvalues: for the solution characterised by r which means 
that odd values of r give pure imaginary contributions. 

Before proceeding further with the analysis let us comment on the basis of the 
steepest descent calculation. Since (2.5) does not exist as it stands, the correct procedure 
is of course to define analogous partition functions where the integration over 4l is 
along contours in the complex plane, the contours being chosen so that the functions 

t With our definition of M:,'', positive eigenvalues lead to the generation of imaginary parts 
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are well defined for Re g > 0. By rotating the contours one can define these functions 
for other values of g by analytic continuation. This procedure has been discussed in 
detail for the single-component 4 3  theory (McKane 1979). There it was shown that 
there are essentially two choices for the partition function, Z'"(g) and Z'3'(g)  (in the 
slightly modified notation of that paper), with Z(')*(g)  = Z ( 3 ) ( g ) .  The function Z ( g )  
is taken to equal Z"'( g )  for 0 < arg < and Z'3'( g )  for 0 > arg g > -T, with a branch 
cut for all real g. Since these are really functions of g 2  one either works with 2 '2 ' (g2 ) ,  
0 < arg g 2  < 2 ~ ,  or with Z'3'(g2) ,  O> arg g' > -27. In this more rigorous approach the 
factors of i in the steepest descent calculation came from the paths of steepest descent 
going off into the complex plane. However, experience with the single-component 43  
theory and other toy systems shows that the straightforward approach adopted in our 
case gives the correct result apart from (i) ambiguities in the sign of factors of i, and 
(ii) possible factors of coming from the fact that for some of the saddle points only 
f the Gaussian integral coming from perturbations about the saddle point may con- 
tribute. This is rather fortunate since contours in C" are not easily visualised and we 
choose to determine the signs of the factors of i and the factors off in a different way. 
This is discussed in detail in the appendix where it is shown that 

(2.13) 

where the plus sign is taken if arg g = 0 and the minus sign if arg g = 7. 

The contribution from all saddle points has been explicitly evaluated and displayed 
in (2.14) since we will need this information when we consider the continuation to 
n = 0. However, if we are interested in positive integer n, then the leading contribution 
to Im Z n ( g )  comes from the r = 1 solution only. This is because A") given by (2.10) 
is a monotonically increasing function of r in the range of interest and so all other 
contributions are exponentially smaller. Therefore, 

-n 
exp( 6 (n+  l)'(n - 1)' ;) r 1 + 0 ( g 2 ) 1  (2.15) 

where the exponentially smaller terms have been omitted and where the upper sign 
corresponds to arg g = 0 and the lower sign to arg g = T. 

Having obtained Im Z n ( g ) ,  the second step in determining the asymptotic behaviour 
of the perturbation expansion is to use the analytic structure of Z,(g') to write a 
dispersion relation relating Re Z n ( g 2 )  for g 2 <  0 to Im Zn(g') for g 2 >  0. Since Z n ( g 2 )  
is analytic apart from a branch cut along the positive real g 2  axis, we consider the 
contour shown in figure 1. Then 

(2.16) 

But Zn(lgzI)-lgzI-"'6 as lgI+o3 and so the contour at infinity can be discarded and 
we are left with 

(2.17) 
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Figure 1. Contour involved in the dispersion relation for positive integer n. 

Identifying terms in the perturbation expansion using (2 .6)  (which of course has the 
same form for g2<O)  we find 

arg gl2 = 0) dgf2 (2 .18)  

This result is true for all K ,  but we only know ImZn(g'2) for small g'2 which means 
we can determine ZK(n) for large K.  Substituting (2 .15)  into (2 .18)  gives 

(2 .19)  

In the appendix we evaluate & ( 2 )  and z K ( 3 )  directly and find agreement with this 
result. From (2 .6)  and (2 .19)  we see as expected that the perturbation expansion is 
non-oscillatory for large K when g2 > 0 and oscillatory when g2 < 0. 

We now go on to investigate the limit n + 0. A glance at (2 .19)  reveals a problem: 
Z K ( n ) -  n - K  as n + 0 .  Since it is obvious from the structure of the perturbation 
expansion that Z K  ( n )  exists as n + 0 (in fact it is clear that 2, ( n )  - n as n + 0), clearly 
this saddle point cannot describe the asymptotic behaviour of the n = 0 theory. So we 
may ask what saddle point does dominate and how is the previously dominant r = 1 
saddle point excluded? We have been able to make progress on this point because in 
addition to calculating the action for all r, we have calculated the prefactors in (2 .14)  
and thus in (2 .19)  for all r as well. Let us first give an argument which leads to 
ZK ( n )  - n for n + 0 and moreover agrees with HRW when extended to field theory. 

In the limit n + 0 the action of the solution changes sign: from (2 .10)  

(2 .20)  

Whereas A ' " / g 2  3 0 for positive integer n and g2 > 0, the analogous n + 0 quantity, 
u") /g2 ,  satisfies u c r ) / g 2 S  0 for g2> 0. This reflects the fact that the n = 0 theory does 
not exist when g is pure imaginary ( g 2 < O )  but is well defined when g is real ( g 2 >  0). 
Thus in order to generate an imaginary part for Z, (g)  and hence 2, ( n )  for n + 0, K 
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large, we have to work with g 2 <  0. In this case the expression on the RHS of (2.20) 
is a monotonically increasing function of r for r 3 1, and the low r solutions should 
dominate. 

The r = 0 solution C#J~ = 0 again gives the usual perturbation expansion (2.6). The 
r = 1 solution has an action which goes like n for small n which naively leads to the 
problem discussed above. However, if the prefactors in either (2.13) or (2.14) are 
examined, one sees that instead of picking up one factor of i from one positive 
eigenvalue, n factors of i are picked up-all n eigenvalues are positive as n + 0. Thus 
the prefactor contains (i)" + 1 as n + O i .  Therefore, the r = 1 solution does not con- 
tribute to the imaginary part of Z,(g). Next, looking at the r = 2 solution, we see that 
an imaginary part is generated. Further the action is non-zero as n + 0 and so no n-K 
divergence is encountered. Also since "+IC2 - n/2 as n + 0 we expect 2, ( n )  - n as 
required. Since the r = 3,4, . , . solutions give contributions exponentially smaller than 
the r = 2  solution, we have 

Im Z,(g) = * - - e x p  ( -- 27ig2,) 11 +O(gZ)1+O(n2) ,  g pure imaginary. (2.21) 

Assuming we can write a dispersion relation as in the case of positive integer n (but 
with the contour now going around the real negative g2 axis), we would expect 

n 
4 a  

ZK(n)  =-(-27)%! n K - ' [  1 +0( i)] +O(n2)  
4 8  

(2.22) 

for large K and n + 0. When this approach is extended to field theory in d = 6 - E 

dimensions it gives the results of HRW. The result (2.22) has all the features we expect 
and desire but we will now go on to argue that it is incorrect. 

Suppose n is even. The r = n/2 solutions exist and have an action proportional to 
n with no factor of i multiplying the exponential. From (2.14) it can be seen that these 
solutions give a factor of - & + O ( g 2 )  to Z,,(g) as n -f 0. The solutions with r = n/2 -  1 
give a contribution equal to (2.21) up to a factor of & coming from the fact that 

Cn,2-l - n / 4  as n + 0 as compared with ""C, - n/2 as n + 0. Indeed, as n + 0 the 
r' = n/2 + 1 - r solutions yield essentially the same results as the solution characterised 
by r. Thus we should add the r = n/2 - 1 result to the r = 2 one in (2.21). This will 
change the value of the prefactor. But why not add the r = n/4 - 1 and the r = n/4+ 2 
solutions if n is divisible by 4, since they give the same action as n + O ?  If n is odd, 
even less acceptable behaviour is found, with the r = n12-4, n/2-;, , . . solutions 
giving terms not proportional to n for small n and with the action of the r = n / 2 - &  
solutions being less than the r = 2 action as n -0. Clearly this is a very ill defined 
procedure with the prefactor of (2.21) indeterminate, and more alarmingly the funda- 
mental result Z,,(g) = l + O( n), for n + 0, violated. We claim that a more controlled 
procedure for taking n to zero is required and in particular that one must take seriously 
the fact that the sum in (2.14) contains [ n/2] terms as n + 0. HRW did note in their 
paper that their results could be obtained by setting ( r ,  n)  = (2,O) or ( - 1 , O )  in the 
formula for the action. It is not clear to us if their method picks up these solutions 
because the r = 1 and r = 0 solutions give real contributions or because these contribu- 
tions are independent of g2 when n = 0. We will not pursue these points any further 
here but instead go on to discuss a more satisfactory continuation to n = 0. 

n t l  

t It might be argued that it is more correct to say that as g2 + -g2 the eigenvalues coming from the exponent 
in (2.7) change sign, thus they all become negative as n + 0 and no imaginary part is generated at all. 
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3. The n = O  limit of the zero-dimensional field theory 

The steepest descent evaluation of the zero-dimensional partition function, 2, (g),  for 
small g, leads to a sum over the contributions from the various saddle points with 
different actions. The number of terms in the sum becomes a meaningless concept as 
n + 0 and in Q 2 it was argued that it was therefore not correct to pick out one term 
in the series as being the most dominant as n + 0. Thus one should continue the sum 
of terms rather than any individual term to n = 0. The usual way of doing this is to 
write an integral representation for the sum with n appearing as a parameter. The 
precise method we adopt is one used in some many-body calculations, namely we write 

(3.1) 

where C is a contour surrounding the positive integers 1 ,2 , .  . . , n (shown in figure 
2(a))  and f ( z ,  n ;  g2) is analytic within the contour C. If f(z, n ;  g') is analytic in the 
larger region 6 G Re( z)  S n + 6, - Y- G Im( z )  G Y+, with 0 < S < 1 and Y+, Y- > 0, then 
we can deform the contour as shown in figure 2(b) and obtain 

Let us denote the four integrals on the RHS by II , 12, I3 and I4 respectively. Changing 
variables to z' = z - n in I3 we see that 

' + j Y + [ f ( z + n ,  n ;  g2)-f(z, n; g2)] dz 
(3.3) 1 e 2 n i z  - i S- iY-  

I ,  + I ,  = 

Taking n + 0, this gives 

[6+"Y+f(z, 0; g2) dz + O( n') 
1 

II + Z3 = n e 2 n i z  - 
S - i Y -  

(3.4) 

assuming limn-of'(z, n; g') exists and equals f'(z, 0; g2). Integrating (3.4) by parts, 
the integration of the exact differential is found to equal exactly - ( I 2 +  Z4) to O ( n ) ,  
apd finally one finds 

If the function f(z,O; g2) is such that we can take Y+, Y-+cc then (3.5) may be 
expressed as 

n T i n  [6+i"f(z, 0; g') dz c f ( r ,  n ;  g2) = -- 
r = l  2 S-im sin2 TZ 

+ O( n'). 

We now apply (3.6) to the expression (2.14) for Z,(g). Several points should be made 
at this stage. Firstly, the sum in (2.14) extends to [n/2], not n. For simplicity we 
suppose n to be even so that [n /2]  = n / 2  is an integer and (3.6) can be used. A more 
general treatment in which this restriction is not necessary is given in the appendix. 
Secondly, inspection of the analytic properties of the summand in (2.14) shows that 
the formula (3.1) is applicable and also that the distortion of the contour from that 
shown in figure 2(a)  to that shown in figure 2( b )  is allowed. Thirdly, we need to take 
g' < 0 in order to generate an imaginary part for n = 0 as discussed in P 2; the correct 
signs for the factors of i depend on whether arg g = ~ / 2  or arg g = - ~ / 2  and are 
determined in the appendix. Fourthly, the first term in (2.14) is perturbative and real 



462 
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-Y- 
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-- 

-- 1 c 

i 6) 

Figure 2. ( a )  Contour surrounding the integers r = 1 , 2 , .  . . , n. ( b )  Distortion of contour 
in ( a )  to facilitate continuation to n = O .  

and presents no difficulty when continuing to n = 0. It has the form 1 + O( n). Bearing 
all these points in mind, (2.14) and (3.6) lead to 

1 
lim-[Zn(g) - 13 
n - 0  n 

dz exp( 7 ivz/2)( 1 - 2z)-’/’ 
(sin2 ~ z ) z (  1 - Z)T cosec r z  
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where only non-perturbative contributions have been kept and where the upper sign 
is taken if arg g = -lr/2 and the lower sign if arg g = -lr/2. Taking S =f without loss 
of generality and writing z =f+iy,  one finds that the real parts of (3.7) are equal but 
that the imaginary parts are equal in magnitude but opposite in sign. Specifically 

1 
lim - Im Zn( g )  
n - 0  n 

(3.8) 

where again the upper (lower) sign is taken if arg g = lr/2 (-7r/2). The integral in 
(3.8) may be evaluated by steepest descent for small lgl and yields 

up to exponentially smaller terms. This result should be compared with (2.21) which 
was obtained by assuming that the set of dominant terms in the sum when n = 0 could 
be extracted from the sum even though the number of terms in the sum was vanishing. 
The expression (3.9) is more complicated; in particular, the O(lgl-2/3) in the exponent 
comes from the continuation of the (*i)‘ n+’Cr factors. The possibility that this factor 
is modified by higher-order terms is discussed in 0 5 .  

From the more detailed study of the structure of Zn(g)  camed out in the appendix 
it is clear that limn+o ( l /n)[Zn(g2) - 11 + constant as 1g21 + 00. Therefore, we cannot 
use a straightforward dispersion relation, as in the positive integer case, to obtain the 
asymptotic behaviour of the perturbation expansion, since the contour at infinity cannot 
be discarded. Instead we have to use a once subtracted dispersion relation. Suppose 
limn+o ( l /n)[Zn(g2)  - 11 is analytic apart from a branch cut along the negative real g2 
axis; then consideration of the contour shown in figure 3 yields 

1 1 
lim-[Zn(g2) - 1]-lim-[Zn(ag2)- 11 
n-0 n n-0 n 

1 
(3.10) (d2 - g2)(g” - ag2) 

where a f 1 is some real positive number. Since limn+o [Zn(g’2) - 13 + constant as 
Ig”I + 00 the contour at infinity may be discarded and one finds 

1 1 lim -[Z,(g2) - 11 - lim -[z,( ag2)  - 11 
n-o n n-0 n 

l imn+o(l/n) ImZn(g‘2 ;argg‘=a/2)dg‘2  
(d2 - gZ)(gr2 - agZ) 

g2 >o, - - 
lr 

(3.11) 
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Figure 3. Contour involved in the dispersion relation for n = 0 

where we have used the fact that the imaginary parts for arg gI2 = *T are equal in 
magnitude but opposite in sign. Comparing powers of gZK in the perturbative 
expansion of (3.11), we obtain 

limn+o (1/ n )  Im 2, ( g’2; arg g‘ = ~ / 2 )  dg” 

(g’’)K+l 
1 

1 
lim - [ 2, ( n ) ] = - 
n-o n 

K = 1,2,  . . . , (3.12) 

exactly the same result we would have found if a subtraction had not been necessary. 
Substituting (3.9) into (3.12) and performing a steepest descent calculation for large 
K yields 

I I 
lim - [ZK(  n ) ]  = 
n-0 n ( 7 2 T  1 

, , 6  K ! (-24)KK-5’3 

x e x p [ - ~ ( 9 ~ ~ ) ” ~ ~ ” ~ ]  1 + 0  - [ (Ktl i ) l ‘  
(3.13) 

This form differs from the one usually found for the asymptotic behaviour of quantities 
calculated perturbatively in scalar theories because of the appearance of the exp( -con- 
stant K factor. This is a direct consequence of our continuation to n = 0. The most 
important feature, however, is still the oscillatory nature of the series for large K which 
means that the zero-dimensional theory is well defined for real g. Having studied the 
zero-dimensional case in considerable detail we now go on and apply the same 
techniques to the field theory in d = 6 - F dimensions. 

4. The n = O  limit of the d-dimensional field theory 

The starting point for the discussion of this section is the Hamiltonian (2.1) without 
the quartic and higher-order terms: 

% ( A )  = d d x [ f ( C ~ , ) ( ~ - ( b , ) + ~ m ~ , ~ , + ( g / 3 ) p , , , ~ , ~ , ~ , l .  (4.1) 
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The saddle points in the combined function space and internal (n-dimensional) 
space-the instantons 4,,,( x)-satisfy 

-v24i + rod)! + gpgk414k = 0. (4.2) 

For positive integer n and real coupling constant g, the solutions of least action take 
the form 

4JX) = udc(x).  (4.3) 

To prove this consider the general solution written as +,,c(x) = u , ( x ) ~ , ( x )  and compute 
its action. It equals 

+ ddX[iU,Uz4c(-V2+ T o ) ~ c + ( ~ / ~ ) P ~ ~ U , U , U ~ ~ ~ I  

(4.4) 

1 
3 1 ddx[tutu,4c(-V2+ r o ) 4 ~ +  (g/3)PykUiUjUk4;l 

with equality only when Vu, = 0 for all z. Assuming a solution of the form (4.3), we 
see from (4.2) that U, is proportional to p,lkuluk for all i. Since the U, are independent 
of x the constant of proportionality is x independent and because we are free to choose 
the normalisation of the U, we can take it to be unity. Thus (4.2) reduces to 

= Pzjkujuk, (4.5a) 

- ~ ~ 4 , + r ~ + ~ + g 4 : = 0 .  (4.5b) 

From the discussion of the continuation to n = 0 in 0 0  2 and 3 we would expect the 
dominant contribution to the imaginary parts of the Green functions of the n = 0 field 
theory to come from solutions of the type (4.3). However, we have no proof of this 
and so for the moment (4.3) must remain an ansatz as far as the continuation to n = 0 
is concerned. 

The problem of finding the saddle points has now been reduced to solving the two 
equations (4.5), both of which have previously been studied. The equations for the U, 
were solved in 0 2 and the equation for r$c(x) is identical to the saddle point equation 
for a one-component 4 3  theory which was considered by McKane (1979). An analytic 
form for 4 c ( ~ )  can be found in one dimension; however, in three dimensions, for 
instance, the solution has to be found numerically. This is not as bad as it seems since 
it is known that the solutions of least action are spherically symmetric and thus (4.5b) 
reduces to an ordinary differential equation. 

In the rest of this section our discussion will be limited to the case where d = 6 - E 

for two main reasons. Firstly, calculations near to, or in, six dimensions can be 
performed analytically and the method can therefore be more clearly illustrated. 
Secondly, we eventually want to characterise the asymptotic behaviour of the E 

expansion, and calculating the asymptotic behaviour of the perturbation expansion in 
g and in d = 6 - E dimensions is a necessary prerequisite. The philosophy and technical 
aspects of carrying out instanton calculations using dimensional regularisation is 
discussed by McKane and Wallace (1978) and McKane (1979) (see also Drummond 
and Shore (1979) for a slightly different approach). The instanton solution relevant 
to d = 6 is used; any corrections due to the fact we are working in 6 - E dimensions 
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are treated perturbatively in E.  In exactly six dimensions the required instanton with 
least action is a solution of (4.56) with ro = 0, is spherically symmetric and is given by 

24 A 2  
4 A x ;  xo, A )  = -- g [ 1 + h 2 ( ~ - ~ O ) 2 ] 2  (4.6) 

where xo and A are the position and (inverse) size of the instanton respectively. For 
the solutions of least action we therefore find, using (4.5), 

X ( U : ~ ) ~ ~ )  = - + U ~ ~ ) U { ~ )  5 ddx(g4f)  

Here we are primarily interested in the Green functions of the field theory, and not 
the partition function which was used for illustration in earlier sections. The N-point 
Green function is defined by 

Performing a saddle point evaluation of (4.8) using the solutions discussed above, it 
is easy to see that the leading asymptotic behaviour of (4.8) is found by using the 
perturbative ( I  = 0) solution in the denominator and the non-perturbative ( I  > 0) 
solutions in the numerator. We therefore obtain 

where C,  is a factor which arises because (4.6) is not a solution of the saddle point 
equation (4.56) in 6 - ~  dimensions (McKane 1979) and where 

(4.106) 

Since our purpose is to investigate the renormalisation group functions we will only 
be interested in the N = 2 and N = 3 Green functions. Now 

and 

( 4 . 1 1 ~ )  

(4.1 1 b )  

where a ( n )  is defined by pilmpjlm = a ( n ) S , .  From now on we therefore omit the 6ili2 
and p i I i z i 3 / a ( n )  factors and G(N) will be taken to mean G(2) or G(3),  although the 
calculational method goes through with little change to the case of general N. The 
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small oscillations determinant M can be diagonalised in (i, J )  space using the eigenvec- 
tors (2.12), and (4.9) becomes 

G(N)(xl, x2,. . . , x N !  

1 
n ,  

=-E n * 1 ~ r ~ ~ " ~ ! " ~ c ( ~ , ) ~ c ( ~ 2 ) .  . . ~ J x N )  exp -%'(~JC,  

where 

a = 0 ,  1,2,3,  4 5 ( d t ( , ) +  1 ) A 2  M(,) = -v2 - 
[ 1 + A ( x - xO) 2]2 ' 

with 

(4.12) 

(4.13) 

The eigenfunctions and eigenvalues of M,,), M(2)  and M(31 are not known analytically 
in d dimensions, and thus det M(,,/det M(o) cannot be calculated directly. However, 
this combination can be calculated indirectly by mapping the theory onto a hypersphere 
in d + 1 dimensions. One then finds (McKane 1979) that 

det M(,) det V(,, 
det M(o,  det Vc0, 
--- - 

a = 1,2 ,3 ,  (4.15) (L+d/2+5(, , ) (L+d/2-5( , , -1)  = E (  L=O ( L + d / 2 ) ( L + d / 2 - 1 )  

where 

and 

(4.17) 

L2 in (4.16) is the square of the angular momentum operator in d + 1 dimensions and 
vL is the degeneracy of the eigenvalues of L2 in this dimension. Examination of (4.15) 
and (4.17) when a = 1 shows that the L = 0 mode gives a negative contribution (and 
therefore an imaginary contribution to (4.12)), the ( d  + 1) L = 1 modes give O ( E )  
contributions (leading to possible divergences in (4.12)) and the L> 1 modes are 
harmless. The ratio of determinants when a = 1 is identical to that found in the 
one-component case. Rather than repeat the discussion given in that case, we merely 
recall that to cope with the potential zero modes, caused by the breaking of translational 
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and dilatational invariance by the solution (4.6), collective coordinates have to be 
introduced. Therefore (4.12) should read 

G")(x,, x2 , .  . . , x N )  

4C(Xl)4C(X*).. ' 4C(XN) = - 1 n+lC,t(tr)t(Ir) ddXo dA Jv(2 j - - 'd+1) /2  1 
n ,  

(4.18) 

where J v  is the Jacobian of the transformation to collective coordinates, the ( 2 7 r - I l 2  
factors come from the absence of ( d  + 1)-Gaussian integrals in the numerator and the 
tilde indicates that the potential zero modes have been extracted. 

It is not our purpose here to evaluate the various terms in (4.18) in detail; we are 
more interested in discussing the continuation to n = 0. To this end let us separate 
out various terms in (4.18) which bring out the analogy with the d = 0 case. In particular 
let us note from (4.15) that the L = 0 contribution from the product of the determinants 
is (setting E = 0) 

which should be compared with (2.13). It is clear that the continuation to n = O  will 
go through in the same way as for the d = 0 case, and from (4.15) it can be seen that 
there is no possibility of zero or  negative modes when n = 0, r + CO and L > 0 (apart 
from the translational and dilatational modes already extracted). Let us now go through 
the continuation rather more carefully by writing 

G"'(x,, x2 , .  . . , x N )  

where 

( L + 3  + d/2)(L - 4 +  d/2) 
( L +  d/2)(L+ d / 2  - 1 )  

( L  + d/2 + 5 [ 2 ) ) (  L + d/2 - & 2 )  - 1 ) 
L= ' 1 ( (L+d/2 ) (L+d/2 -1 )  

(4.21) 
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Concentrating on (4.20) for the moment, we see a very similar expression to (2.13). 
From our experience in 00 2 and 3, we expect that the correct signs for the factors of 
i should be as in (2.14). We can now repeat the analysis of 9 3  and arrive at the 
analogous expression to (3.9). Of course, in this case in order to obtain a meaningful 
expression the theory has to be renormalised. This should present no difficulties; 
renormalisation of similar expressions has recently been carried out (McKane et a1 
1984, Newlove 1984), but it is not our intention here to discuss this rather technical 
problem and we restrict ourselves to making a few general comments in § 5.  Luckily 
we do not have to go through the renormalisation process to obtain the dominant 
terms in the asymptotic behaviour of G“’: if G(KN) is the coefficient of g Z K  then it 
follows from the methods of § 3 that for large K 

G(KN)- K ! ( - 5 / 4 8 ~ ~ ) ~ .  (4.22) 

This structure will appear in all renormalisation group functions as well as in the 
Green functions. 

Corrections to (4.22) can be computed systematically from (4.20) and (4.21) after 
renormalisation. The expression (4.21) was separated out since it does not contain 
terms which affect the continuation to n = 0. There are zero and negative modes for 
positive n in the determinant factors in (4.21) and one has to imagine a regulator 
controlling these while the limit n + 0 is being taken. The net effect, however, is merely 
to set n = 0 and r = O(lgl-2/3) in (4.21). 

5. Conclusions 

In this paper we have discussed a systematic method of investigating the asymptotic 
behaviour of the perturbation expansions for n = 0 cubic theories, although the method 
should also be applicable to other n = 0 interactions (the well known example of the 
O( n )  invariant ( c$2)2 interaction does not need this treatment since all the solutions 
labelled by the group parameters have the same action and thus there is no equivalent 
of the sum on r ) .  The approach was illustrated for the percolation problem where the 
solutions controlling the asymptotic behaviour were labelled by the integer r = 
1,2,  . . . , n for positive integer n. After continuation to n = 0, it was found that it was 
the r = CO (or more precisely the r = O(lgl-2’3), g small) solution which characterised 
the asymptotic behaviour. This corresponded to the solution of greatest action amongst 
the class of solutions under consideration. This, together with the occurrence of ( n  - 1) 
potentially massless modes (actually with mass O( /g12/3)), is very reminiscent of features 
found in another n = 0 problem (Bray and Moore 1978, 1979). Our results disagree 
with HRW who, for example, find the result -15/128n3 in (4.22) (with our normalisa- 
tion) where we find - 5 1 4 8 ~ ~ .  Moreover we expect that our method is capable of 
calculating corrections to (4.22). 

There are two aspects of the calculation described in this paper that need further 
investigation. 

(i) Renormalisation of the field theory has not been carried out. We expect that 
this would follow the path laid down by McKane et a1 (1984) and Newlove (1984). 
The renormalisation scheme would be an extended form of minimal subtraction, but 
of course the asymptotic behaviour of the E expansion (determined from that of the 
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renormalisation group functions) would be universal and independent of the details 
of the renormalisation scheme. 

( i i )  There are ( n  - 1) nearly massless modes both in d = 0 and in higher dimensions 
(they are L=O modes in the field theory). Since they have a mass which is O(lg12/3) 
they could enter into higher-order corrections in such a way as to cause the breakdown 
of the perturbation expansion about the saddle point. This is a very difficult question 
to answer since the factors of r generated from tensor contractions themselves become 
g dependent, but it is probable that prefactors are changed by these modes and it may 
be that the O(/gl-*/') term in the exponent is modified or cancelled completely. The 
correct procedure would be to extract these modes by the introduction of collective 
coordinates, but since it is not clear what symmetry, if any, has been broken it is not 
obvious how to carry this out. 

The dominant behaviour displayed in (4.22) is not affected by (i) and (ii) above, 
which only affect the corrections to this result for large K .  As it stands, (4.22) contains 
the most important information for the resummation of the E expansion in the percola- 
tion problem. This resummation together with the application of this method to spin 
glasses is now under consideration. 
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Appendix 

In P 2 the saddle points of Z,,(g), the zero-dimensional partition function, were 
enumerated and the evaluation of the various contributions made by these saddle 
points to the integral defining Z,(g) led to the expression (2.13). None of the subtleties 
of a proper steepest descent calculation were evident in this approach. Here we carry 
out a more careful analysis of the zero-dimensional case which is designed to show 
that the crude 'instanton' approach adopted in the main text gives the correct results. 

For motivation consider the n = 0 (4')' theory. The zero-dimensional partition 
function is 

This presents no difficulties since if we go over to spherical polar coordinates in n 
dimensions we can perform the angular integrals trivially: 

z,,(g)=S,, ~ o m d R R " - ' e x p ( - ~ R 2 - g R 4 / 4 )  

where R 2  = + 2  and S, is the surface area of a sphere in n dimensions. The integral 
in (A2) can now be studied carefully using steepest descent methods. In this case the 
n = 0 limit is trivial. 
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The analogous expression for the theory with the symmetry of the ( n  + 1)-state 
Potts model, as given by ( 2 . 5 ) ,  is 

Z,(g) = dR R"-' exp(-iR2)fn(gR3) (A3) 

where 

fn(gR3) = 1 dnn exp[(-g/3)p,kdidjdkl( 1 (A41 

and where R, is the solid angle in n dimensions. The purpose of this appendix is to 
study the form off,(gR3) for various values of n ( n  = 2, n = 3, general positive integer 
n, n = 0) and then evaluate Z,(g) from (A3) by steepest descent. We begin with n = 2 
and n = 3 where f,(gR3) can be evaluated in terms of familiar special functions. 

n = 2  

Taking the following representation for {e:}, 

1 
e3=-(-&, - l ) ,  (A5) 1 1 

Jz e2=-(J5, - I ) ,  Jz e' =-(O, 2 ) ,  Jz 
the only non-zero Pok are pill = 3 I f i  and plI2 = - 3 / 4 .  Therefore, 

P i j k 4 d f P k  = (3 /a) (d:  - 3@:d2)* (A61 

With #q = R sin ,y and 42 = R cos ,y one finds that 
r n  

f2(gR3) =' J dB exp(-gR3 cos e / J z )  
T o  

= Io( gR3/ h) (A71 
where Io is the usual modified Bessel function (Watson 1944). It has the following 
properties of interest to us: 

* ( z 2 / 4 ) K  

= Lo (K!)2 

Now if one began from the n = 2 version of ( 2 . 5 )  and performed a proper steepest 
descent calculation, one would presumably find a sudden change in the steepest descent 
contours for arg g = 0 reflecting the presence of a branch cut. In this approach the 
change in the steepest descent contours shows up as a Stokes phenomenon: the 
coefficient of e-' in (A9) changes discontinuously at arg z = 0. As explained in 8 2, 
one either works with the partition function defined for 0 s arg g2 s 2 ~ ,  in which case 
(A9a) is appropriate, or with the partition function defined for 0 2  arg g2 2 - 2 ~ ,  in 
which case (A9b) is appropriate. Here we choose to work with the former. Using 
(A9a) the steepest descent evaluation of Z 2 ( g )  can now be carried out. For real g 
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there are two saddle points: R = O  and R = O(g-'). To investigate the latter it is 
sufficient to use the asymptotic form 

since corrections near the saddle point are O ( g - ' K 3 )  = O(gz).  The expression (A10) 
is valid if arg g = 0 or arg g = T. A calculation along similar lines to the one-component 
case (McKane 1979) now yields 

Im Zz(g) = *&T exp(-1/27g2)[1 + 0 ( g 2 ) ]  ( A l l )  
where the upper sign is taken when arg g = 0 and the lower sign when arg g = T. Using 
the dispersion relation technique discussed in 5 2, the coefficient of g Z K  in the expansion 
of Z,(g) in powers of g' is found from ( A l l )  to be 

z, (2) = &(27)"K ! K - l [  1 + O( 1 / K ) ]  (A12) 
for large K. This shows the expected non-oscillatory behaviour for real g. This result 
may be checked directly by substituting (A8) into (A3) and integrating. 

n = 3  

The exact treatment for this value of n can be made simpler by making the following 
choice for {e:}: 

e '  = (1,1,  I ) ,  

e3 = (-1, 1, --I) ,  e o =  (-1, - 1 , l ) .  (A131 

P g k 6 r 6 j 4 k  =24414243. ( ~ 1 4 )  

e 2 = ( 1 ,  -1, -11, 

The only non-zero P l , k  is p l Z 3  = 4 and therefore 

Going over to spherical polar coordinates one finds that 

f3(gR3) =& 1 1 d x  dB sin 0 exp(-8gR3 sin' 0 cos 0 cos x sin x) 
2rr 7T 

(A151 
0 0  

The asymptotic expansions for 1*1,6(z) then give 

i.418) 

where the sign of the constant term depends on the value of arg g just as in (A9). We 
again choose to take the positive sign. The steepest descent evaluation of Z 3 ( g )  now 
proceeds in an exactly analogous way to that of Z z ( g )  and gives 

(A191 
where the signs are chosen as in ( A l l ) .  Using (2.18), the coefficient of g 2 k  is found 
to be 

Im Z,(g) = * ( 2 ~ ) ' "  expi-1/128g2)[l +O(g2) ]  

Z,13)-2~2~)"'(l?Y)"K!K~'[l+O(l/K)] i A20) 

for large K.  Once again we have an exact result, 1.416), against which our method for 
obtaining Z K  can be checked. 
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General positive integer n 

To find Im Zn(g)  using this approach we need to find the generalisation of (A9) and 
(A18) to general n. Let us begin by obtaining a recurrence relation for fn. Suppose 
{E:; A =  1 , 2 , .  . . , n + 2 ,  I = 1 ,2 , .  . . , n +  1) is the set of Potts vectors in (n + 1) 
dimensions. They may be written in terms of the Potts vectors in n dimensions 
{e:; a = 1,2,  . . . , n + 1, i = 1,2, . . . , n} as follows: 

E" =(n+l)- '"((n+2)'/*e:, - l) ,  ( M I )  

~ t '  we write 

E"+' = (n + 1)-'l2(o, 0, . . . ,o, n + I). 

This enables us to relate f n + l  to fn:  

fn+'(gR3) = l: sinn-'f?d8 fn [ g ( Z ) ' I 2 R 3  sin3 81  

-- n ( n + 2 )  R3 cos3 e)( 1; sin"-'@ de)- '  
3 (n+1) 'I2 

The asymptotic expansion for fn(gR3) is found to be 

) [ 1 + O(g-'RW3)] 
( n +  l ) ( n +  1 -2r) 
(n  + 1 - r) '/2r'/2 

where the signs are chosen as before. This was obtained as follows. The general form 
is clear from our experience with n = 2 and 3 and from the knowledge that a steepest 
descent calculation must give (2.13) up to factors of *i and 4. Use of the recurrence 
relation (A24) determines these factors. The verification of (A25) involves rather a lot 
of tedious algebra which we omit. Choosing the plus signs in (A25) as usual and 
noting that when arg g = 0 the r = 1,2, . . . , [ n/2] terms give the dominant contributions 
but that when arg g = 7 the r = n, n - 1, . . . , n + 1 - [n/2] terms are the important ones, 
we find 

n + l ) ( n +  1 -2r) 
( n + l - r )  r 1 / 2  1 / 2  ) [1 +o(g-'R-3)1 x e x p ( y  ( 

where g is real, the plus sign referring to arg g = 0 and the minus sign to arg g = T. 

Using (A3) and (A26) and performing similar calculations to those described for n = 2 
and n = 3 gives the result (2.14). 
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It should be noted that including a factor S, in the definition of f, in ( A 4 )  ensures 
that it has a non-zero limit as n + 0. For example, the first term in the perturbation 
expansion for general n is 

+ O( g2R6)2. 
g2R6( n + 1)2( n - 1) 

fn(gR3)= '+ 3 ( n + 2 ) ( n + 4 )  

n = O  

Using the continuation method discussed in 0 3 ,  and in particular (3 .6) ,  we find that 

where we have used S,  = 2 d / ' / r ( n / 2 )  = n + O ( n 2 )  as n + 0 and where 

F ( z ,  gR3) = ( 2 7 ~ ) - ' / ~ ( g R ~ ) ~ / ~  exp[fin(z-l)][z(l  -z)]-'/'[z(l - z )v  cosec ~TZ]- '  

) [l  +O(g-1R-3)1. x e x p ( 5  [ z ( l - 2 ) ] ' / 2  
3 (1 - 2 2 )  

Unlike the treatment in 0 3 ,  this result was obtained without restricting ourselves to n 
even and without taking g to be pure imaginary (the signs are as before: the upper 
sign is taken if 0 s arg g s IT and the lower sign is taken if 0 2 arg g 2 - 7 ~ ) .  Taking 
S = f without loss of generality and writing z = f+ iy one finds 

(TigR3)'l2 Sm dy eriYl2 
fo(gR3)= 2 ( 2 1 ~ ) ' / '  ( ~ * + a ) ~ / '  cosh ITY 

Just as the (appropriately defined) one-component 43 integral with a pure imaginary 
coupling constant has no non-trivial saddle points, the expression ( A 3 0 )  with g real 
leads to no non-trivial saddle points when substituted into (A3). Thus for real g the 
partition function when n = 0 is completely described by the perturbation expansion- 
there is no imaginary part, no discontinuity and no branch cut. On the other hand if 
g is pure imaginary there is a non-trivial saddle point which leads to an imaginary 
part for the partition function. From (A30) it can be seen that fo(gR3) is real if 
a rgg=  ~ / 2  and also equal to fo(gR3) when a r g g =  -7712. Performing a steepest 
descent calculation for large lgR31 leads to 

with the upper sign referring to arg g = 7712 and the lower sign to arg g = - 1 ~ 1 2 .  

We can then write (A31) in a form analogous to (A10) and ( A 2 6 ) :  
If we write h = ig then arg h = IT when arg g = 1 ~ 1 2  and arg h = 0 when arg g = - 1 ~ 1 2 .  

(*hR3)1/3) [ I  + O ( h - l ~ ~ ) ]  
1/6 1 /2  

3 - ( 9 4  2 
(f hR3)ll6 

f,(-ihR ) - 

where the upper sign refers to arg h = 0 and the lower sign to arg h = IT. The most 
obvious difference between ( A 3 2 )  and (A10) or (A26) is the occurrence of a term 
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proportional to (lhlR3)1/3 in the exponential. This comes about because of the 
emYyI2 sech .rry term in (A30) which ensures convergence of the integral for large lyl. 
Substituting (A32) into (A3) (with I?"-'= R - ' )  and following the same procedure as 
for the positive integer n cases, we find 

where the upper sign is taken when arg h = 0 and the lower sign when arg h = T. 

Converting back to the original coupling constant g = -ih gives 

where the upper sign is taken when arg g = .rr/2 and the lower sign when arg g = -.rr f 2. 
We expect l imn+o(l /n)[Zn(- ih)- l ]  to be analytic in the upper-half h plane with a 
cut along the real h axis, in analogy with the positive n integer case. In terms of g, 
or rather g2, this means a cut along the negative real g2 axis. From (A3) and (A30) 
it is apparent that limn,0( l/n)[Z,(g) - 11 + constant as lg2( --f 00 and thus this analytic 
structure may be exploited by using a once subtracted dispersion relation to obtain 
the asymptotic behaviour of the perturbation expansion for the n = 0 case. This is 
discussed in more detail in 9 3. 
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